An Adaptive Fuzzy-Based System to Simulate, Quantify and Compensate Color Blindness
نویسندگان
چکیده
About 8% of the male population of the world are affected by a determined type of color vision disturbance, which varies from the partial to complete reduction of the ability to distinguish certain colors. A considerable amount of color blind people are able to live all life long without knowing they have color vision disabilities and abnormalities. Nowadays the evolution of information technology and computer science, specifically image processing techniques and computer graphics, can be fundamental to aid at the development of adaptive color blindness correction tools. This paper presents a software tool based on Fuzzy Logic to evaluate the type and the degree of color blindness a person suffer from. In order to model several degrees of color blindness, herein this work we modified the classical linear transform-based simulation method by the use of fuzzy parameters. We also proposed four new methods to correct color blindness based on a fuzzy approach: Methods A and B, with and without histogram equalization. All the methods are based on combinations of linear transforms and histogram operations. In order to evaluate the results we implemented a web-based survey to get the best results according to optimize to distinguish different elements in an image. Results obtained from 40 volunteers proved that the Method B with histogram equalization got the best results for about 47% of volunteers.
منابع مشابه
Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملAdaptive Neuro Fuzzy Sliding Mode Based Genetic Algorithm Control System to Control of a pH Neutralization Process
In this paper, an adaptive neuro fuzzy sliding mode based genetic algorithm (ANFSGA) controlsystem is proposed for a pH neutralization system. In pH reactors, determination and control of pH isa common problem concerning chemical-based industrial processes due to the non-linearity observedin the titration curve. An ANFSGA control system is designed to overcome the complexity of precisecontrol o...
متن کاملAdaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach
Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...
متن کاملLoad Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملMaximum Power Point Tracking of the Photovoltaic System Based on Adaptive Fuzzy-Neural Method
The aim of this paper was to present an optimized method in order to use maximum capacity of the photovoltaic panels. In this regard, we presented a method for the maximum power point tracking in the photovoltaic systems by using the neural networks and adaptive controller. In the proposed system, we estimated an error by using neural network. If this error is lower than the allowable systems e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integrated Computer-Aided Engineering
دوره 18 شماره
صفحات -
تاریخ انتشار 2011